
Delft University of Technology

Parallel and Distributed Systems Report Series

The Rotan Reference Guide

Leo Breebaart

report number: PDS–1997–002

PPPPDDDDSSSS

ISSN 1387–2109

Published and produced by:
Parallel and Distributed Systems Section
Faculty of Information Technology and Systems
Department of Technical Mathematics and Informatics
Delft University of Technology
Zuidplantsoen 4
2628 BZ Delft
The Netherlands

Information about Parallel and Distributed Systems Report Series:
reports@pds.twi.tudelft.nl

Information about Parallel and Distributed Systems Section:
http://pds.twi.tudelft.nl/

© 1997 Parallel and Distributed Systems Section, Faculty of Information Technology
and Systems, Department of Technical Mathematics and Informatics, Delft University
of Technology. All rights reserved. No part of this series may be reproduced in any form
or by any means without prior written permission of the publisher.

The Rotan Reference Guide page 1

Chapter 1 — Introduction

This document describes various technical and historical aspects of the Rotan system,
and is intended both for people who intend to use Rotan as well as for those who will
need to do future development of the system.

Chapter 2 describes the Rotan source file configuration, and explains how to check out,
compile, and extend the system.

Chapter 3 is more of historical then of immediate interest, and consists of the text of
documents that were produced at the start of the project.

The Rotan Reference Guide page 2

Chapter 2 — The Rotan Source Files

The rotan source files are quite well documented. In principle, therefore, all knowledge
necessary for understanding how Rotan works can be deduced from looking at the
sources (which apart from the usual code comments also contain many notes on specific
design decisions). However, such a bottom-up approach will always work better if there
is also more high-level information available about the set-up and aims of the system,
meeting the implementation documentation halfway, so to speak. This chapter is in-
tended to be such a top-down reference, and does therefore not aim to be exhaustive
down to the file level.

2.1 Checking out and compiling the sources

Rotan is stored in CVS as the module rotan. A copy of the source tree can be checked out
by giving the command:

cvs -d ~lspace/CVS co rotan

The makefile structure for rotan assumes that the environment variable RULECOMPILER
will be set to the newly created top level rotan directory. The binary directory
$RULECOMPILER/Bin needs to be in your path.

Once this is set up, the rotan system can be compiled by simply saying

cd rotan; make all

Rotan has been developed and tested using the experimental egcs C++ compiler. It will
also compile, but not link, with KAI C++.

2.2 Directory Layout

2.2.1 The rotan/ Directory

At the top level, the rotan directory tree has the following layout (only ‘interesting’ files
and subdirectories are shown here):

rotan/
Makefiles/
Bin/
Lib/
Sources/
Rules/
Src/
TODO
BUGS

• Makefiles contains the shared Makefiles for the project.

• Bin contains executables such as the compiled rcc, or any auxiliary scripts e.g. for
controlling the loading of rules.

• Lib contains the libraries created by the project, and is initially empty.

The Rotan Reference Guide page 3

• Sources is a default directory for loading rcc sources (i.e. files containing Tm data
structure instances) from. Example sources are stored here.

• Rules is a default directory for loading rcc rule sources (i.e. files containing RL 2.0
rules) from. Example rules are stored here.

• Src is the directory containing all the Rotan (including the rcc) sources.

• TODO is the global todo-file for the entire project.

• BUGS is the global bugs-file for the entire project.

There is no NEWS or ChangeLog file, because CVS (and its auto-mailing of commits)
takes care of that to our satisfaction (although eventually a real ChangeLog file might
be a good idea, if this code is ever to be distributed to third parties).

2.2.2 The rotan/Src/ Directory

The source directory is divided into the following subdirectories (also known as libraries,
since each subdirectory leads to one library file in rotan/Lib after compilation):

rotan/Src/
Oopl/
Dlib/ -- with subdirectory Dlib/Defs/
Rlib/
Rcc/
Calc/ -- with subdirectory Calc/Defs/
Vnus/ -- with subdirectory Vnus/Defs/

• Oopl (Object Oriented Programmers’ Library) contains stand-alone utility classes
that are used throughout the system but which are not system-specific.

• Dlib (Domain Library) forms half of the heart of Rotan. Dlib contains two broad
categories of classes: first, those classes starting with the prefix rotan, which im-
plement C++ representations of Tm domain constructs, such as tuple or class.
These classes make up the parse tree that is created when a Tm source is parsed
by Rotan. Second, those classes starting with the prefix domain, which implement
an administrative shell for managing multiple domains, and for applying functions
to individual parse trees.

• The subdirectory Dlib/Defs/ contains Tm templates that are used to generate the
actual C++ classes and code for a specific domain. Make does not descend into this
directory, but each separate domain directory has a Defs subdirectory of its own,
where the files in Dlib/Defs/ are referenced, and where make will put the code-
generation process in motion.

• Rlib (Rotan Library or Rule Library) forms the second half of the heart of Rotan.
Rlib too, contains two broad categories of classes: first, those starting with the
prefix rule, which implement an administrative shell for managing rules and ap-
plying functions to individual rule trees. Second, the other classes (un-prefixed),

The Rotan Reference Guide page 4

which implement the Rule Language. These classes make up the parse tree that is
created when a rule file is parsed by Rotan.

• Rcc (Rotan Commandline Compiler) is the interactive environment for working
with domains and rules. This code implements a simple command-line shell, where
commands can be given to load in source files (i.e. parse Tm data structures), load
in rule files (i.e. parse Rule Language programs), and apply rules to the data struc-
tures. Rcc is, in effect, a layer on top of Rlib and Dlib, and which provides an inter-
face for the manipulation and administrative functions found in those libraries.

• Calc and Vnus are two examples of actual Tm domains, adapted for use by Rotan.
Although the rcc must have at least one domain in order to function properly, nei-
ther of these two directories are mandatory by themselves. Any Tm data structure
definition file can be used to create a Rotan domain directory. In this case, the do-
main Calc was taken from the tmdemo example set that comes with the Tm distri-
bution, whereas Vnus is the intermediate programming language from the ParTool
project.

2.2.3 Creating a new domain

In order to create a new domain library for use in Rotan, all that is needed is a copy of
the Tm data structure description file (or ds file, after its conventional extension). Let us
assume that this domain will be called foo, and that the ds-file is therefore foo.ds.

Take the following steps:

• Go to rotan/Src and create the directories Foo and Foo/Defs.

• From Dlib/Defs/Newdomain, copy the file Makefile.dom to Foo/Makefile,
and the files Makefile.defs to Foo/Defs/Makefile and domain.t to
Foo/Defs/foo.t. Also copy your foo.ds to Foo/Defs.

• Now edit all the files copied from Dlib, and follow the instructions therein.

• Go to Rcc/rcc.cc, and follow the instructions there to add the appropriate initialisa-
tion code for the new domain.

• Compile.

I originally intended to give a much more exhaustive description of the domain-creation
process here, but I finally realised that this information will be of much use in the files
themselves than separately on paper here.

The Rotan Reference Guide page 5

Chapter 3 — The Early Rotan Documents

3.1 The Rotan Proposal

In order to provide a complete paper track record for the Rotan project, I am reproducing
the ‘technical’ part of the original proposal here. This text can be seen as a baseline re-
quirements specification, even though its intended goal was to obtain funding, rather
than be a technical document as such. At the time of writing, the name Rotan had not
yet been established.

3.1.1 Objectives, Workplan, and Results

Sugar Vnus program

Rule Compiler

IntermediateVnus Program

SPMD C++

Executable

Transformation and
Optimization Rules

Java/Spar program

Vnus Backend

C++ Compiler

Traditional compilers for programming languages are built as black boxes: a source pro-
gram is transformed into target code by the compiler. Apart from setting a few compiler
options, the programmer does not have the possibility of steering or influencing the
translation process much.

When translating for parallel architectures, the quality and efficiency of the generated
code is influenced by many more possible parameters than in the sequential case. Under
these circumstances, the conventional compiler approach is too limited and restrictive,
and contributes to the consistent lagging behind of parallel software in relation to the
hardware developments.

The Rotan Reference Guide page 6

In the I-Cal project, several approaches were used in an attempt to get a better grip on
the translation process. One such approach focused on developing a calculus for data-
parallel languages, and basing an intermediate language on that calculus. High level
languages are first translated to this intermediate language, optimised, and only then
further translated to target code. Complementary to this approach was the development
of a more advanced compiler technology, leading in effect to a high-level, programmable
compiler.

When translating a parallel program, a user is now able to program the compiler itself
with rewrite rules (using the theoretical basis of the I-Cal calculus), which act on the
program’s representation in the intermediate format. In this manner, it becomes possi-
ble to easily enhance the compiler with hardware-specific or problem-specific optimisa-
tion engines, which themselves take the form of programs, written in the so-called Rule
Language.

The current Rule Compilation System is a rough prototype version, created in aid of the
author’s Ph.D. research into semi-automatic translation of high-level parallel languages.
As a prototype, it has been successfully used to implement various transformations and
optimisations, based on the I-Cal calculus.

However, as a general-purpose tool it is currently not robust, complete, or user-friendly
enough to be used as a valid support technology by anybody but its author, for any other
areas than its current area of application. In addition to this, experience with and eval-
uation of the current prototype has brought to light a number of implementation prob-
lem and design issues that need to be addressed before the system can be used to its full
potential.

The current project intends to address these issues, which are mainly concerned with re-
design and re-implementation. The actual research work has already been performed
and found valid.

3.1.2 Deliverables

Specifications

• The Rule Language 2.0. The design and grammar of a new transformation lan-
guage for program optimisation / translation.

Programs & Tools

• The Rule System Transformation Engine. Core technology for applying the trans-
formations specified in a Rule Language program.

• The Rule Compilation System. A full-featured implementation of a parameteris-
able compilation system, built around the Rule Transformation Engine.

• The Rule Development Environment. An interface to the Rule Compilation System,
intended for interactively programming, debugging and running Rule Language
programs.

The Rotan Reference Guide page 7

Documentation

• The Rule Language 2.0 User Guide and Reference Manual.

• The Rule Compilation System Technical Reference Guide for Implementators.

• The Rule Development Environment User Manual.

3.1.3 Publications relevant to the proposal

[1] Edwin M. Paalvast, Leo C. Breebaart and Henk J. Sips, The Booster Language: A
User Language Reference, Report Nr. 90 ITI 1864, TNO Institute of Applied
Computer Science (ITI–TNO), Delft, The Netherlands, November 1990.

[2] Edwin M. Paalvast, Henk J. Sips and Leo C. Breebaart, Developing and Tuning
Parallel Algorithms with Booster, Report Nr. 90 ITI A 5, TNO Institute of Applied
Computer Science (ITI–TNO), Delft, The Netherlands, January 1990.

[3] Leo C. Breebaart, Edwin M. Paalvast and Henk J. Sips, “The Booster Approach to
Annotating Parallel Algorithms”. In Proceedings 1991 International Conference on
Parallel Processing, 1991.

[4] Edwin M. Paalvast, Henk J. Sips and Leo C. Breebaart, “Booster: a high-level lan-
guage for portable parallel algorithms”, Applied Numerical Mathematics, 8, pp.
177-192, 1991.

[5] Leo C. Breebaart and Peter Doornbosch, The Rule Language, Report Nr. 92
TPD/ZP 1024, TNO Institute of Applied Physics (TPD), Delft, The Netherlands,
September 1992.

[6] Leo C. Breebaart, Edwin M. Paalvast and Henk J. Sips, “A Rule Based
Transformation System for Parallel Languages”. In Proceedings Third Workshop
on Compilers for Parallel Computers, Vienna, Austria, ACPC/TR 92–8, 1992.

[7] Edwin M. Paalvast, Leo C. Breebaart and Henk J. Sips, “An Expressive Annotation
Model for Generating SPMD Programs”. In Proceedings Scalable High Performance
Computing Conference, Williamsburg, VA, IEEE Computer Society Press, 1992.

[8] Leo C. Breebaart, “Experiences with Rule-based Compilation”. In Proceedings
Fourth Workshop on Compilers for Parallel Computers, Delft, The Netherlands,
1993.

[9] Joachim A. Trescher, Leo C. Breebaart, Paul F. G. Dechering, Arnaud B. Poelman,
J. P. M. de Vreught and Henk J. Sips, “A formal approach to the compilation of
data-parallel languages”. In Proceedings 7th annual LCPC workshop, 1994.

[10] Leo C. Breebaart, Paul F. G. Dechering, Arnaud Poelman, Joachim Trescher, Hans
de Vreught and Henk J. Sips, The Booster Language — Syntax and Static
Semantics, Report Nr. CP-95-02 (Technical report), Delft University of Technology,
November 1995.

The Rotan Reference Guide page 8

[11] Paul F. G. Dechering, Leo C. Breebaart, Frits Kuijlman, Kees van Reeuwijk and
Henk J. Sips, “The Meaning and Implications of the Forall Statement in V-nus”. In
Proceedings 2nd Annual Conference of the Advanced School for Computing and
Imaging, ASCI ‘96, Lommel, Belgium, 1996.

[12] Paul F. G. Dechering, Leo C. Breebaart, Frits Kuijlman, Kees van Reeuwijk and
Henk J. Sips, “A Sound and Simple Semantics of the FORALL Statement within
the V-nus Compiler Framework”. In Proceedings 6th Workshop on Compilers for
Parallel Computers, Aachen, Germany, 1996.

[13] Paul F. G. Dechering, Leo C. Breebaart, Frits Kuijlman, Kees van Reeuwijk and
Henk J. Sips, “A Generalized Forall Concept for Parallel Languages”. In
Proceedings 9th Annual Workshop on Languages and Compilers for Parallel
Computing, San Jose, California, USA, to appear in Lecture Notes in Computer
Science, Springer Verlag, 1996.

[14] Paul F. G. Dechering, Leo C. Breebaart, Frits Kuijlman, Kees van Reeuwijk and
Henk J. Sips, A Generalized Forall Concept for Parallel Languages, Report Nr. CP-
96-003 (Technical Report), Delft University of Technology, 1996.

[15] Paul F. G. Dechering, Leo C. Breebaart, Frits Kuijlman, Kees van Reeuwijk and
Henk J. Sips, “Semantics and Implementation of a Generalized FORALL
Statement for Parallel Languages”. In Proceedings IPPS, Geneve, Switzerland,
1997.

[16] Leo C. Breebaart, Rule-based Compilation, Ph.D. thesis, Delft University of
Technology [to be published], 1997.

3.1.4 Epilogue October 1997

Although you could quibble over the word “full-featured”, and although the rcc never
evolved to the point where it became sophisticated enough to warrant a separate User
Manual, or even a paragraph in the Reference Guide, I’d say that about 80 % of the pro-
ject’s goals as originally proposed have been reached.

The Rotan Reference Guide page 9

3.2 Tools for Rules — report of an investigation

At present count, the Rule Compiler consists of about 45 hand-written classes imple-
menting the Rule Engine, about 50 hand-written support classes, and about 130 Tm-
generated classes representing the Vnus domain.

The key characteristic of the support classes is that they provide general purpose func-
tionality (ranging from string handling classes to object container classes such as List or
Vector) that is not specific to the project, but can be used or built upon by any program.

One of the first decisions that needs to be made for the RTTDS project (Rule-based
Transformation of Tm Data Structures, of course!), is determining what support classes
we are going to use.

I have spend some time investigating the possibilities, and have identified what I think
are our four main options. They are:

1. Continue with the currently used Object Oriented Programming Library (Oopl or
Ooplib for short).

2. Create a new version of the Oopl from scratch.

3. Use the GNU C++ Library (libgen or libg++ for short).

4. Use the HP/SGI Standard Template Library (STL for short).

I will provide a bit more info for each option, as well as my recommendation with respect
to the usefulness of choosing it.

3.2.1. Current Oopl

Advantages:

• Those methods and classes we currently use from the Oopl are pretty well de-
bugged — or at the very least the bugs (and possible workarounds) are known.

• With a little luck, no new coding effort will be required, especially not in the short
term.

 Disadvantages:

• Ancient legacy code from the dawn of time.

• Extremely ill-designed and badly programmed.

• Maintainability, documentation, and extendibility are all but non-existent.

• Portability problems.

• Follows the ‘tree’ model of support classes (one common Root object that every-
thing is derived from), making integration with other classes difficult.

The Rotan Reference Guide page 10

• Not up to the task of providing proper support for RTTDS, because of lack of sup-
port for modern C++ constructs such as templates.

 Conclusion:

It would be extremely unwise to continue with the Oopl. Now is the time to
switch to something better. This will cause extra effort in the short term but
will so be worth it in the long term that the question is almost a non-issue.

3.2.2. New Oopl from scratch

Advantages:

• Sources under our control, making it easy to tailor this library to our own specs,
leaving out all unnecessary baggage, but including functionality we can benefit
from.

 Disadvantages:

• Writing a good Oopl duplicates a lot of effort and thought that has already been
spent on these issues by the rest of the C++ world.

• There is no time for writing our own Oopl from scratch.

• Portability problems.

 Conclusion:

The ‘no time’ argument pretty much clinches this, as far as I am concerned.
Of course it will be always be possible to add our own custom support
classes if necessary (UniqueId comes to mind) — I just do not think that we
can afford the time to write the really basic stuff (strings, containers, itera-
tors, etc.) ourselves.

 3.2.3. GNU Libgen

Advantages:

• Libgen follows the ‘forest’ model of support classes (no common Root object), mak-
ing it easy to pick-and-choose, or to integrate with other approaches.

• We already have some experience with some of the libgen classes, and apart from
the ‘template’ classes, they are pretty easy to work with, and appear quite stable.

 Disadvantages:

• Has not been updated in years. Development appears to have stopped.

• Duplicates functionality now found in STL.

The Rotan Reference Guide page 11

• The template ‘mechanism’ used by libgen is outdated (it predates C++’s intrinsic
templates) and badly implemented (as we know from experience).

• Integration with GNU g++ itself is so bad it won’t even compile correctly at all
levels of optimisation.

 Conclusion:

Using libgen exclusively is a bad idea: the software is too old, too shaky, and
too unsupported for reliable use (sort of like our own Oopl, but now written
by other people). Certain classes, however, (in particular the String/Regexp
classes) may well be suited as ingredients in a mix ’n match approach to
support classes.

 3.2.4. The STL

Advantages:

• Officially adopted by ANSI, and therefore expected to be a portable, reliable, ubiq-
uitous standard for the foreseeable future.

• Excellent documentation available in the form of books, web pages, example pro-
grams.

 Disadvantages:

• STL implements a novel algorithmic approach (called generic programming — for
a quick introduction see attached article copies) which will have a learning curve
attached, not only when it comes to how to use it, but particularly when it comes to
writing our own additions and integrating it into our own software.

• Not STL’s fault, but nevertheless a potential problem: GNU g++ 2.7.2 (the most
current version) has such lousy support for C++ templates, that STL will not com-
pile out of the box with gnu. Instead, we need specially modified versions, and even
then the results aren’t 100 % (as I have already determined empirically).

• As yet, I do not get the impression that STL is that widely used. As such, its status
is perhaps a bit more experimental still than we would have liked.

 Conclusion:

Going over all the information I’ve read and reviewed for this survey, I can
only come to the conclusion that STL is the way to go, despite the disadvan-
tages.

The Rotan Reference Guide page 12

3.2.5 Epilogue October 1997

The decision to go with STL has, as far as I’m concerned, indeed been the right one, par-
ticularly so when we were able, halfway through the project, to switch to the experimen-
tal egcs compiler, a development C++ compiler based on the conventional GNU sources,
but many lightyears ahead in terms of C++ (and STL) support.

Although the old GNU compiler actually did better than expected on compiling the
rudimentary kind of STL usage needed for Rotan, the switch to egcs enabled me to start
writing some really proper C++ code, without the need for workarounds and kludges ev-
ery three lines. The fact that the Rotan code can also be compiled by the very strictly
conforming KAI C++ compiler is a tribute to this.

The Rotan Reference Guide page 13

3.3 The Name of the Game

3.3.1 Introducing: Rotan

A project needs a name. For historical reasons, the first generation of the rule compiler
system never really acquired one, and this has been a frequent source of confusion, both
in day-to-day conversation amongst ourselves, and when trying to communicate with
others. Now that we are going to spend six months building the second generation of the
system, the time seems right for a once-and-for-all fix of the nomenclature issues.

After considerable thought and experimentation, I propose to use the word Rotan as the
canonical ‘top-level’ name for referring, in general, to the new project.

Rotan as a word has no special meaning, and is intended as neither acronym nor abbre-
viation. Instead it is a neutral, short, bilingual word that resonates comfortably in both
Dutch and English with the concepts it is supposed to encompass. Elements of words
like ‘rotate’, ‘transform’, ‘translate’, ‘language’, ‘rules’ and even ‘data (structures)’ can all
be found in Rotan.

Originally, I was of the opinion that the word would look best when written as ROTAN,
in small caps, but upon reflection I think that the added effort, however minimal, neces-
sary to achieve this typesetting effect consistently in all our documents will simply not
be worth the trouble. As to the remaining alternatives, spelling it in all caps as ROTAN
is something I have never found aesthetically pleasing in other languages or systems.
Using bold text — Rotan — is cute, but makes the word stand out too much from the
surrounding text. In the end I have compromised and chosen to simply follow the con-
vention as exemplified in e.g. Booster, ParTool and Vnus, and write the word in italic
text, capitalised: Rotan.

3.3.2 Further Terminology

Within the Rotan project, it is still going to be necessary to identify certain sub-systems
by separate names.

I have tried not to fiddle with the currently used names of these subsystems too much
— too many radical changes and everything becomes confusing again, defeating the
original purpose of the exercise. However, even the existing names have not been prop-
erly documented and explained anywhere yet, and could do with a little bit of polishing
up. Hence this section.

The terminology used for the Rotan components is as follows:

The Rule Language

The Rotan Reference Guide page 14

This is the actual name of the programming language that transformation rules are
written in. The current version of the language (as described in Chapter 4 of my PhD
thesis) is version 1.0, the new version will be version 2.0.

The Rule Language can be abbreviated as RL (or RL 1.0 / RL 2.0, as necessary).
Programs written in this language will reside in files having a .rl extension.

Since one of the key characteristics of the Rule Language is that it can be parameter-
ized, it will occasionally be useful to refer to the Core Rule Language, that is: only those
elements of the Rule Language that are invariant, i.e. available across all possible in-
stantiations of the language.

The Rule Engine

This refers to the ‘implementation’ of the Rule Language, the actual code for performing
the transformations specified by a rule. The I/O code for reading rule files and parsing
rules is also considered to be part of the Rule Engine. The Rule Engine is not in itself,
however, an executable program.

The Rule Engine can be abbreviated as RE, but is historically more often referred to as
the Rlib, after the name of the library which houses its code.

The Domain Libraries

A domain is, in the abstract sense, nothing more than a Tm data structure, as described
in a Tm data structure file. In the Rotan context, the Tm data structure file is called the
domain file, and a Domain Library consists of all the code generated from a domain file,
plus any additional handwritten code for custom methods, such as printing and pars-
ing.1

For unfortunate historical reasons, the Vnus domain library is currently known as the
Nlib.2 In Rotan, this will be renamed into the more appropriate Vnuslib.

The Rule Compiler

The most ambiguous name of all. To begin with, up until now, the phrases ‘Rule
Compiler’ and ‘rcc’3 (after the name of the Unix executable) have often been used to sig-
nify the entire project, as in: “We’re going to use Leo’s Rule Compiler”. With the advent
of the top-level name Rotan, this usage is officially deprecated.

Even so, confusion has arisen because three closely related, yet subtly different concepts
have at times all been referred to as ‘Rule Compiler’ or rcc. The common denominator is
that in each case the Rule Compiler in question is the actual executable used to trans-

1Printing and parsing will be automatically generated as well, as soon as Tm fully supports object oriented
languages, and Rotan fully supports Tm domains — but those are issues outside the scope of this memo.
2Once upon a time there used to be a Vista domain library already called Vlib. When I needed to create a Vnus
domain library, I therefore had to think of something else to use: I simply chose the next letter in the word
‘Vnus’.
3Or rather ‘ncc’ to be more historically correct, see footnote 2.

The Rotan Reference Guide page 15

form an input file into an output file according to an RL program. The difference lies in
how many of the various parameters are considered to be part of the executable.

Although it is usually clear from context which concept is being referred to, it will be
good to have an ‘officially sanctioned’ way of referring to each of the three possibilities.
Therefore:

1. The Core Rule Compiler or rcc.

In analogy to the Core Rule Language, this is the most skeletal form of the exe-
cutable, consisting of library interface code, command-line parsing code, and the
interactive user interface code. The Core Rule Compiler is that part of the exe-
cutable that is invariant across all possible executables created by the Rotan sys-
tem. In functional terms, its usage is:

rcc domain rules source

2. An Instantiated Rule Compiler.

In analogy to an Instantiated Rule Language, this is an executable that is config-
ured to process both source files and rule files associated with a specific domain. It
consists of the Core Rule Compiler code and a domain library. An Instantiated
Rule Compiler for a domain D is also often referred to as “the D Compiler”. In
functional terms, its usage is:

(rcc domain) rules source

3. A Specific Rule Compiler or Transmogrifier

This is an executable that is configured to process source files associated with a
specific domain, according to a specific rule program. In effect, this is the fully in-
stantiated rule compiler, equivalent to the traditional compiler-as-a-black-box.
Specific Rule Compilers are typically referred to as “the <adjective> D Compiler”,
for example: “the shared-memory Vnus compiler”, but basically the executable can
at this point be given any appropriate name and simply regarded as another Unix
command. In functional terms its usage is:

(rcc domain rules) source

I hope the above classification will make some sense to the reader. The Core Rule
Compiler is a single entity created by my programming in C++. There are infinitely
many Instantiated Rule Compilers possible; one can be created at any time and by any-
body, simply by writing a Tm domain file and plugging the resulting domain library into
the Core Rule Compiler. Each Instantiated Rule Compiler in turn can be turned into an
infinity of Specific Rule Compilers; one of which can be created at any time and by any-
body, simply by writing a program in the Rule Language and plugging that in turn into
the Instantiated Rule Compiler.

If this functional approach to the Rule Compiler seems needlessly complex, it should
perhaps be pointed out that the person writing domains does not have to be the same
person as either the one writing rules, or the one writing the source files to the compiler.

The Rotan Reference Guide page 16

rcc

domain rulessource

transformed
source

rcc

rulessource

transformed
source

rcc

source

transformed
source

Core Rule Compiler Instantiated Rule Compiler Specific Rule Compiler

3.3.3 Meanwhile, in a Parallel Universe

The software engineering aspects of Rotan are complicated somewhat by the fact that
Rotan is not immediately going to supersede all that went before. The current imple-
mentation of the rule system is going to remain in existence, on a separate revision
branch, for purposes of my PhD thesis. It will therefore be necessary to have a way of
referring to and differentiating between these two software branches in conversation
and writing.

With this in mind I propose to use the phrase Rotan BC for the ‘old’ system.

3.3.2 Epilogue October 1997

The proposed names have not been very difficult to assimilate in day-to-day conversa-
tion. In hindsight, I think that especially the name Rotan itself has been a particularly
good choice.

The Rotan Reference Guide page 17

3.4 Rotan and Tm

In this memo I will describe the relationship between Tm and Rotan, specifically in the
light of the requirement specifications for the latter. Used terminology is as per R002.

3.4.1 A comparison

From the very beginning Rotan BC has included (by way of the Libgen utility and its
processing of domain files) a crude functionality similar to that which Tm provides.

A Rotan BC domain file contained compact, language-independent specifications of ele-
mentary, record-like data structures. The Libgen utility parsed the domain file, parsed a
template file, and used the C preprocessor to generate from these inputs a set of C++
classes — one instance of the template file for each structure defined in the domain file.
Each class contained the member fields defined in the original record, plus a set of gen-
erated methods allowing the rule engine to traverse a parse tree made up out of in-
stances of these classes.

A Tm data structure file contains compact, language-independent specifications of sev-
eral different kinds of data structures, one of which is an elementary, record-like struc-
ture called a tuple. The Tm compiler parses the data structure file, parses a template
file, and outputs code according to elaborate meta-commands sprinkled throughout the
template file. Depending on the template, the result can be anything. Default templates
yielding C code are included with Tm. These templates generate a number of standard
functions (ranging from allocation to parsing to printing) that work on each structure in
the data structure file.

The similarities between these two descriptions are striking. As a full-fledged system,
Tm is obviously much more powerful and generic than the special-purpose Rotan BC
approach, but the basic idea of generating code based on the specific combination of data
structure definitions, template files, and a substitution-based tool is exactly the same.

Even more interesting is the complimentary nature of the primary differences between
the two approaches. In Tm an entire template language is available to direct the code
generation; in Rotan BC we never made that leap, trying to make do with elaborate
makefiles and shell commands instead. Rotan BC, on the other hand, offered an entire
rule language to direct manipulation and transformation of the generated data struc-
tures, which is something Tm has no direct support for. In other words:

Tm is almost unlimited in what it can generate, but strongly limited in what
it can manipulate, whereas Rotan BC is almost unlimited in what it can
manipulate, but strongly limited in what it can generate.

An idea was born...

The Rotan Reference Guide page 18

3.4.2 Integration: the First Step

Our first attempt to bring Tm and Rotan BC closer together occurred about a year and a
half ago, when we converted the Rotan BC domain file into an equivalent Tm data
structure file and used Tm itself rather than the exceedingly untrustworthy Libgen util-
ity to generate the C++ classes and the tree traversal routines. No attempt was made at
this point to develop generally useful C++ templates (e.g. with support for the other Tm
data structures, and with support for e.g. parsing and printing methods). At this point
all we wanted was to simply achieve a one-to-one mapping of existing functionality.

This succeeded beyond all expectation. Only one extension had to be made to the Tm
data structures: support for inheritance — a crucial feature of C++ classes. Likewise
only one simplification had to be made to the Rotan BC data structures: abandoning the
mapping that allowed rule language keywords to be different from their domain coun-
terparts. After these two changes, the two formats matched, and Libgen was successfully
replaced by Tm.

3.4.3 Tm + Rotan BC = RTTDS = Rotan

In Rotan we intend to take the fusion between Tm and Rotan BC to its logical conclu-
sion, which is the creation of a generic system for Rule-based Transformation of Tm
Data Structures. RTTDS was in fact an acronym I considered using for a while, but in
the end I decided that Rotan, while not as appropriate, can at least be (a) remembered
and (b) pronounced.

In Rotan we want to be able to accept any valid set of Tm data structures as a domain,
and allow a user to write transformation rules in the Rule Language instantiated for
that domain, and apply those rules to source files using an Instantiated Rule Compiler
for that domain.

In order to successfully do this, the Rule Language 2.0 will have to be designed more
explicitly with Tm data structures in mind, and the Rule Engine will have to be modified
accordingly. Both these design issues will be the subject of future memos in this series.

It appears increasingly likely that Tm itself will have to be modified, too. Although in-
heritance is possible, the current ‘flat’ nature of Tm’s constructor types precludes their
easy integration into the ‘deep’ inheritance chain that is one of the defining characteris-
tics (and strong points) of the Rule Language.1 More information on this issue will be the
subject of a future memo by Kees.

1In Rotan BC, for instance, we had to rewrite the Vnus data structure file in such a way that no constructor
types, but only tuples were used. Although this process could perhaps be automated so that it can be applied to
arbitrary data structure files, it leads to redundancy and a loss of cohesion in the rewritten file. Not good.

The Rotan Reference Guide page 19

3.4.3 Epilogue October 1997

Tm has indeed undergone a major revision during the course of the Rotan project, and
now contains support for a true class type that makes everything described above possi-
ble.

These changes have been documented in the new version of the Tm User Manual, also
available in the PDS report series.

❖❖❖❖❖

